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SUMMARY 

A formulation based on three scalar functions or potentials is applied to  analyse the Navier-Stokes and 
Boussinesq equations in three dimensions. In this formulation an explicit expression for the pressure exists, 
the so-called generalized Bernoulli equation. Therefore the scalar functions formulation may be considered as 
a generalization of the well-known potential flow and Bernoulli theory for irrotational fluid motion. The 
many advantages of this formulation applied to  three-dimensional Navier-Stokes and Boussinesq flow will be 
discussed, and a numerical example is given as an illustration. 
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1. INTRODUCTION 

Since the advent of advanced computer architectures, namely, vector computers and parallel 
processors, numerical simulation of three-dimensional flow has become feasible. However, before 
developing numerical schemes to solve the three-dimensional equations, it will be advantageous to 
consider the possible formulations of the basic flow equations. 

Three-dimensional numerical solutions to the Navier-Stokes equation governing the motion of 
fluids with constant density, and to the Boussinesq equation governing the motion of 
incompressible fluids in temperature and solute concentration fields, are conventionally based on 
either the formulation with the primitive variables velocity and pressure or on a formulation where 
the vorticity is made a primary variable. The disadvantage of the formulation based on the 
primitive variables arises from the difficulties in handling the incompressibility constraint. 
Disadvantages of a formulation based on the vorticity are that explicit boundary conditions for the 
vorticity are not available and that for three-dimensional calculations six unknowns are dealt with. 

In this paper a formulation based on three scalar variables or potentials is presented. This 
formulation is basically equivalent to a formulation based on the vorticity but does not exhibit its 
disadvantages. 

Since in this scalar representation an explicit expression for the pressure is available (the 
generalized Bernoulli equation), this formulation may be considered as a generalization of the well- 
known potential theory for irrotational flow. First the potential formulation for the Navier-Stokes 
equation is derived and then, on the basis of these former results, an extension to the Boussinesq 
equation is presented. Finally a procedure to compute the flow velocities very accurately is given. 
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The conclusion is that a formulation based on scalar variables is very convenient for a theoretical 
and numerical analysis of flow phenomena. Also a numerical example dealing with Stokes flow will 
be presented. 

2. MATHEMATICAL. PRELIMINARIES 

Theorem 1 

This well-known theorem states that any irrotational vector field u may be represented by 
u = V 4 ,  where the scalar function 4 is unique up to the addition of a constant.' 

Theorem 2 

Theorem 2, or Euler's theorem on divergence-free fields, states that any divergence-free vector 
field w may be represented by w = V m  x V$, where m and $ are scalar functions.' 

Theorem 3 

Since the curl of any vector field v is divergence-free, it follows from Theorem 2 that 
V x v = Vm x V$. Furthermore, since Vm x V$ = V  x (mV$), it follows that V x (v -mV$)=O. 
Consequently it follows from Theorem 1 that any vector field v may be written as v = V 4  + mV$, 
where 4, m and $ are scalar functions or potentials (sometimes called Monge potentials or 
Clebsch variables'). 

3. THE BOUSSINESQ EQIJATION IN POTENTIALS 

The advective time derivative 

In fluid kinematics the advective acceleration Dvldt ,  i.e. the advective time derivative of the 
velocity field v, plays an important part. The definition of D v / D t  is given by 

DV av a V  
- = - +(v.V)v= - + ( V  x v) x v+v(+v-v) .  
Dt at at 

Use of Theorem 2 for w = V x v results in 

(V x v) x v=(v.Vm)V$-(v-V$)Vm. 

Use of Theorem 3 for v results in 

at = ($)v$ - ($)vm+v( + m g ) .  

Substitution of these two expressions into the definition of the advective acceleration yields 

Dt 

where 
D m  am D* -d* 

~ = - + v-Vm, 
Dt at Dt at 

- - - - + v . v *  

represent the advective time derivatives of the potentials m and t,b. 
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The viscous stress tensor 

An important expression in fluid mechanics is the divergence V . S  where S is given by 

s = pcvv + (VV)T] + ( k  - ip) (V.  v)I. (3) 
Under the assumption that the dynamic viscosity p and the bulk viscosity k are constant, the 
following expression is found: 

v~s=(k+Qp)V(V~v)-pvx(Vxv).  

V x (V x v)=(V2$)Vm-(V2m)V$ +(V$.V)Vm-(Vm.V)V$ 

V - S  =(pV2m)V$ -(pV2$)Vm-p(V$*V)Vm+p(Vm-V)V$ +V[(k +$p)(V-v)]. 

Use of Theorem 2 for w = V x v yields 

and, as a result, the following expression is found: 

(4) 

From the theory presented in the-Appendix it follows that the vector field (Vm-V)V$ -(V$.V)Vm is 
in the plane spanned by the vector fields Vm and V$, i.e. 

(Vm.V)V$ -(V$*V)Vm= bV$ -pVm, (54  
with 

Substitution of (5a) into (4) results in 

The Boussinesq equation 

Boussinesq equation 

where g is the gravitational acceleration which is assumed to be irrotational, i.e. g = VR; the fluid 
density p is given by p = po( 1 + x), where po  is a constant density and x describes the changes in 
density due to variations in temperature or concentration of dissolved mass;2 7c = p / p o  -a, where p 
is the fluid pressure. 

The equation of motion relating force and acceleration for a Newtonian fluid will be given by the 

Dv/Dt = x g  - VZ + V.(S/p,), (7) 

Substitution of expressions (2)  and (6) into the equation of motion (7) results in 

, (8) 
Po 

where v = p / p o  is the kinematic viscosity. In agreement with the Boussinesq approximation i t  has 
been assumed in expression (8) that V-v=O. 

For reasons which will become clear in the next section, the curl of equation (8) will be taken, 
resulting in 

x V m = V x x g .  (9) 
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4. FLUID FLOW WITH CONSTANT DENSITY 

The Navier-Stokes equation 

the Navier-Stokes equation, where x = O .  For x : = O  it follows from equation (9) that 
For flow where variations in density do not play a part, the Boussinesq equation (7) simplifies to 

Dm/Dt-v(V2m+b)-c,lC/=c2, 

D+/Dt - v(V2$ t p) - c3m = c4, 

where cl(t), c2(t), c 3 ( t )  and c4(t) are integration constants that are a function o f t  only. The choice 
c1 =0, c3 =0, c4=0, c2 =o # O  yields the following two advection-diffusion equations: 

&/at + v-Vm= vV2m+ vb +o, 

a+/at + v - v *  = vv2* + vp. 
( 104 

(lob) 

The reason for the choice c2 = o # 0 will be explained in the next section. 

expression for the pressure: 
Substitution of equations (10a) and (lob) into equation (8) with x = O  results in an explicit 

where the integration constant c,(f) is a function of t  only. For constant g, R = gz, where z is the co- 
ordinate in the direction of g. 

For irrotational flow (i.e. V x v = Vm x V$ = 0) the term mat,b/at + co$ disappears and equation 
(1 1) simplifies to the well-known Bernoulli equation. For this reason equation (1 1) may be denoted 
as the generalized Bernoulli equation for rotational flow. 

Boundary conditions 

The boundary conditions are that 

are specified on a closed boundary aD, where n and 7i (i= 1,2) are the three unit vectors normal and 
parallel to the boundary respectively. The tangential boundary conditions on aD can be written as 

from which it follows that 

( z -v-- a4)W -- ( z .v-- a 4 ) w  -=o onaD. 
az2 a?, a?, az, 

On a non-moving no-slip boundary, where ti.v:=O, we find for i,b 

If the $-field is known, the boundary values of t,b can be determined by integration of this last 
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expression. A possible choice is 
$=4 on aD (W 

and the resulting boundary condition for m is 

m=-1  on 8D. 

Boundary condition (12b) is possible thanks to the choice c2 = o #O in equation (10a). i f  we had 
instead chosen c 2  = 0, we would find a non-trivial solution with am/& # 0, even for steady flow. Of 
course this would be very inconvenient for actual (numerical) calculations. 

Substitution of boundary conditions (12a) and (12b) into the generalized Bernoulli equation (1 1) 
for the pressure on the boundary yields 

p / p o  - R + ~ V - V  + o@ = 0 on aD. ( 124 
From the above-presented theory it will be observed that the Navier-Stokes equation can be 
written as two coupled advection-diffusion equations (10a) and (lob) for which well-defined 
boundary conditions exist and where the pressure can simply be derived from the generalized 
Bernoulli equation (1 1). The two equations (lOa) and (lob) will be coupled by a third equation for 4 
which will be discussed in Section 6. 

The above description with potentials is very advantageous compared with the conventional 
description based on the vorticity. In this latter description a well-defined boundary condition for 
the vorticity does not exist, there is no simple way to determine the pressure and the three- 
dimensional formulation is based on six equations. In these respects it will be very attractive to base 
a (numerical) analysis of the Navier-Stokes equations on the above-presented formulation with 
potentials. However, an important question before making such a decision is whether the 
generalized potential flow theory can be extended to other types of flow than pure Navier-Stokes 
flow. For this purpose the extension of the generalized potential flow theory to flow governed by 
the Boussinesq equation will be discussed in the next section. 

5. EXTENSION TO FLUIDS WITH VARYING DENSITY 

Let us now assume that in equation (9) V x x g # O .  
According to Theorem 3, the vector x g  may be written as 

xg=Vcj* +m*V$*. (13) 

Since 4*, m* and $* are not uniquely defined by (13), we choose m* such that Vm* is in the plane 
spanned by Vrn and V$: 

Vm* = flVm + f2V$. (14) 
We further choose a relationship between fl and fi given by 

mVfl+$Vf2=0. 

The choices (14) and (1 5) can be made without any loss of generality of expression (1 3),  since $* and 
fi , f2(fl) can be chosen to fit any arbitrary V x x g  = flVm x V$* + f2V$ x V$* and 4* can be 
chosen to fit any arbitrary V-xg.  Since both V x xg and V - x g  completely determine the vector xg 
itself, the choices (14) and (15) do not limit the vector x g  to a special choice. 

The choices (14) and (15) result in m* = f lm+ f2$ +constant and substitution of this result and 
expression (15) into (13) yields 

( 164 Xg=V(4*+constant x $*)+mVFl +$VF,, 
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with 

Fl =f1**, F2 =fz**. ( 16b) 

Taking the curl of expression (16a) and substituting the results into equation (9) yields 

x V m = 0 .  

Similar to equations (lOa), (lob) we find 

am/& + v - V m  = vV2m+ vb + W- F , ,  

a$/at  + v - v $  = vv2$ + v p + F , .  (18b) 

Substitution of (18a) and (18b) into (8) and (16) results again in the generalized Bernoulli 
equation (1 1). 

In this way we have obtained an extension of the Navier-Stokes theory presented in Section 4 at 
the expense oftwo additional unknowns F ,  and F ,  governed by equations which are coupled to the 
equations for the potentials m and $. 

6. THE CONTINIJITY EQUATION 

The continuity equation consistent with the Boussinesq approximation is given by2 

v . v  = 0. (19) 

V 2 @  = - v . ( m V $ ) .  (204 

Substitution of Theorem 3 into (19) yields 

On a non-moving no-slip boundary the boundary condition for Poisson equation (20a) for @ is 
given by either 

&$/an = n - v  + c?$/dn on dD (20b) 
(since m =  - 1 on dD; see equation (12b)), where n - v  is the given inflow or outflow rate, or, 
according to equation (12c), 

where p is the pressure specified on the boundary. 
The coupled set of equations (1 5), (1 8a), (18b) and (20a) in domain D, together with the boundary 

conditions (12a), (12b) and either (20b) or (20c) on boundary dD, govern the flow in domain D. The 
velocity v follows from Theorem 3 by (numerical) differentiation: v= V& + mVq5. 

7. DETERMINATION O F  VELOCITY FIELD BY INTEGRATION 

The vector Poisson equation for the velocity 

Sometimes one is interested in a computational procedure where the velocity field v is calculated 
avoiding numerical differentiation. For instance, calculation without numerical differentiation of v 
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is necessary when one is interested in the vertical velocity component under conditions where this 
component is very small with respect to the horizontal velocity component. Such a situation often 
occurs in shallow water or in the atmosphere. In this case we can find the solution v by numerical 
integration of the vector Poisson equation 

V2v= -V x (Vm x V$). (21) 

In the following discussion (21) will be proved and the correct boundary conditions for (21) will be 
derived. 

With the vector expression V x (V x v)=V(V-v)- V2v we find from (21) 

V ( V - v ) + V x ( V m x V I ) - V x v ) = O .  (22) 

Taking the divergence of (22) yields 

V2(V-v)=0 in D. 

In order to find V-v = 0, we must specify one of the following boundary conditions to the Laplace 
equation (23a):j 

(i) V-v=O on dD; (23b) 

(ii) d(V-v)/dn=O on dD (234 

and, additionally, V-v=O at at least one point on dD; 

(iii) V.v=O o n d D , ,  d(V*v)/dn=O on dD,, 
with dD, u dD, =dD. 

Equation (23a) with either boundary condition (23b), (23c) or (23d) results in 

V-v=O in D. (24) 

(25) 

VZh = 0. (26a) 

Substitution of (24) into (22) yields 

V x v =Vm x V$ + Vh, 

where h is a scalar function. Taking the divergence of (25) yields a Laplace equation for h: 

In order to find V x v=Vm x VI) or Vh=O, we must specify one of the following boundary 
conditions to the Laplace equation (26a):3 

(i) h=constant on dD; 
(ii) dh/dn=O on dD; 

(iii) dh,/dn=O on dD,, h = constant on 8D2, 
with dD, udD, = dD. 

Equation (26a) with either boundary condition (26b), (26c),or (26d) results in Vh=O in D or, 
equivalently, 

V x v = V m x V $  i n D .  (27) 

From expressions (24) and (27) we observe that equation (21) with the above-presented boundary 
conditions give the correct velocity field v = V 4  + mV$ with V - v  = 0. 
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The velocity boundary conditions 

Normalflow boundary condition. Let us discuss further the meaning of the boundary conditions. 
From taking the dot product of expression (22) with the normal unit vector n it follows that 
boundary condition (23c) (or (23d) on dD,) is equivalent to 

n . V x ( V m x V $ - V x v ) = O  o n d D ( o r o n  dD,). (284 

Condition (28a) is satisfied when 

n x (V x v) = n x (Vm x V$) 

or, with a$ dm 
an an n x (Vm x V$) = -Vm - -V$, 

when 
a* dm 
an an n x [n x (V x v)] = -n x Vm- --n x V$ on dD (or on aD,). 

On a non-moving no-slip boundary, where n x Vm = 0 and $ = 4, this results in the following 
expression for the tangential components of V x v: 

am 
an 

- n  x [n x (V x v)] = -n x V 4  on dD (or on dD,). (28b) 

Condition (28b) states that the tangential components of V x v-Vm x V$ are zero, which means 
the curl of this vector, V x (V x v -Vm x V$), has no normal component, i.e. (28a) is automatically 
satisfied by (28b). 

Boundary condition (26b) (or (26d) on aD,) is equivalent to n x Vh = O  on dD (or on dD,) and 
from equation (25) it will be observed that this condition also results in boundary condition (28b). 

In order to make the problem (21), (28b) well-posed, the boundary condition n.v specified on dD 
(or on JD,) must be given 

Tangentialflow boundary condition. It follows from (25) that boundary condition (26c) (or (26d) 
on dD,) is equivalent to 

n.V x v=n.(Vm x V$)=V$-(n x Vm) on JD (or on dD,). (294 
On a non-moving no-slip boundary, where n x Vm = 0, this results in n - V  x v = 0. Again this 
condition is automatically satisfied when we specify 

- n x ( n x v ) = O  on dD (or on aD,). (29b) 
From (29b) it follows that boundary condition (26c) (or (26d) on dD,) is just the no-slip condition 

on a non-moving boundary. Combination of boundary condition (29b) with boundary condition 
(23b) (or (23d) on aD,) makes the partial differential system (21), (23b), (29b) equivalent to 
v = V 4  + mV$, V.v = 0. The problem is well-posed if the part dD, of the boundary dD is ~onnected .~  
If there exist more disconnected regions dD:, aDf,  etc., the solution is not unique. 

Summary 

we have to solve the equation 
To determine the velocity field v by numerical integration instead of numerical differentiation, 

V 2 v = - V x ( V m x V $ )  i n D .  
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The boundary conditions for this equation are either 

n-v is given on aD (or on dD,), 

- n x  [ n x ( V x v ) ] = n x  -Vd 
am 
an  

on 8D (or on aD2); 

or 
n x v = 0  on dD (or on aD,), 

V.v=O on aD (or on aD,), 

where dD is a non-moving no-slip boundary and aD, must be connected. Determination of the 
three velocity components by numerical integration has proved to be extremely accurate when 
dealing with flow in porous media (where the right-hand side of equation (21) is given by a different 
expression), even when the vertical component is orders of magnitude smaller than the horizontal 
velocity  component^.^'^ 

8. NUMERICAL EXAMPLE 

As an example, two-dimensional steady Stokes flow of a fluid with constant density in a 
rectangular driven cavity will be considered, in which the upper boundary moves with velocity Vin 
the horizontal x-direction. 

For this problem the Boussinesq equation (7) simplifies to the Stokes equation 

V.(S/P,) = v n ,  v * v  = 0. (30) 

(3 1) 

(32) 

Substitution of expression (4) into (30) yields 

(vv2rn)v# -(vv2#)vrn= v(V#-V)Vrn- v(Vrn-V)V$ + Vn. 

(vv2rn)v# - (vv2#)vrn = - 2v(Vrn-V)V# + V(n + vVrn.V#). 

With V(Vm-V#)=(Vrn-V)V$ +(V$.V)Vrn it follows from (31) that 

Let us now assume that #= Vz, which results in 

Taking the curl of (33) yields 

(vv'rn) x Vz = 0. 

Expression (34) can be satisfied if we choose 

V2m=0 in D. 

The generalized Bernoulli equation is 

From the continuity equation V-v and Theorem 3 we find 

(34) 

(35) 

dm 
a Z  

- V 2 d = V -  i n D .  
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As boundary conditions for the Poisson equation (37) we choose 

4 = 0  on dD,, 

4=  Vx on dD,, 

a4/an = o on aD2 and dD,. 

It follows then that the boundary conditions for equations (35) are given by 

In all these expressions 

As follows from Theorem 3 and the generalized Bernoulli equation (36), the physical 
interpretation of the results in dimensionless form is given by 

In equation (40a) and (40b) the dimensionless velocity v1 and pressure pl are made dimensionless 
with the driving velocity Vand with p V 2  respectively. The dimensionless space co-ordinates r1 are 
made dimensionless with the depth of the cavity L, while the Reynolds number Re and the Froude 
number Fr are defined as Re = VL/v and Fr  = V ’/gL. Finally the dimensionless potentials 4’ and 
$’ are made dimensionless with VL. 

The set of dimensionless coupled equations was solved iteratively by successive substitutions, in 
which the solution of system (37),(38) is substituted into system (35), (39) and the solution of system 
(35), (39) is substituted into system (37), (38) and so on until a sufficient degree of convergence is 
reached. After 75 iterations a relative accuracy of00001 was reached for and m. A rectangular 
mesh of nodal points with a mesh size of 1/32 was used in combination with conventional 
conforming linear triangular elements. The streamline pattern is shown in Figure 1 and the 
‘pressure’ Re(p’ -z’ /Fr)  is presented in Figure 2 in the form of isobars. 

Comparison of Figure 1 with the numerical results obtained by Pan and Acrivos7 shows that the 
agreement is good. 

9. CONCL#USIONS 

The analysis presented in this paper shows that theoretical analysis and numerical solution of the 
continuum equations governing the motion of fluids can conveniently be based on a formulation 
where the three Cartesian components u,, u,, u, of the velocity field v have been replaced by three 
scalar fields or potentials 4, m, I). The advantages of a formulation with potentials are: 

1. In the formulation based on the primitive variables the (from a practical point of view) most 
interesting physical quantities, velocity and pressure, are calculated directly by numerical 
integration and this is often considered as an advantage, especially in situations where free 
surfaces or fluid-structure interactions are important. The great disadvantage of this latter 
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Figure 1 .  Streamline pattern; the numerical data represent the value of the stream function S, where u t =  -aS/dz' ,  
v: = as/axi 

formulation arises from the difficulties in handling the incompressibility constraint V - v  = 0. 
These difficulties do not arise in a formulation based on potentials and also then it is possible 
to compute one or more velocity components by numerical integration instead of numerical 
differen tiation. 

2. Transport of the two potentials m and II/ is accomplished by advection and viscous diffusion. 
Hence the range and timescale of significant variations in m and II/ is more restricted and 
slower than that of the primitive variables velocity and pressure, either of which can 
experience large changes being felt at infinity instantaneously. In a formulation with the 
potentials 4, m and I) this latter behaviour is experienced by only one potential field, namely 
the generalized velocity potential 4 satisfying a Poisson equation. As a result, in regions 
where the flow is irrotational this fact is automatically accounted for, resulting in a solution 
procedure based on classical, well-established potential flow theory for the classical velocity 
potential 4. Thus a formulation based on potentials is much 'milder' than a formulation 
based on the primitive variables velocity and pressure and consequently it may be expected to 
yield numerical results which are a better representation of the exact solution. 

3. The two above-presented advantages are also valid for a conventional formulation based on 
the vorticity. However, if viscous flow is considered, explicit boundary conditions for the 
vorticity are not available, whereas explicit boundary conditions do exist for the potentials rn 
and II/ representing the vorticity. 

4. Another disadvantage of a conventional three-dimensional formulation based on the 
vorticity is that six unknowns (and consequently six equations) are present. A formulation in 
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Figure 2. Isobar pattern; the numerical data represent the value of Re(p' - z ' / F r )  

potentials deals with only three variables (4, m, t,b); thus it should lead to a more economical 
use of the computer in cases where three-dimensional fluid motion is considered. 
In a conventional formulation based on the vorticity an explicit expression for the pressure 
does not exist. In the formulation with potentials an explicit expression for the pressure, the 
generalized Bernoulli equation, does exist. This is especially useful for the description of free 
surfaces and fluid-structure interactions. 

NOMENCLATURE 

function representing coupling between equations (m-2) 
function representing density variations (m2 s - 2 ,  

function representing density variations (s- l) 
gravitational acceleration (m sW2)  
fluid bulk viscosity (Pas) 
potential representing vorticity (dimensi.onless) 
fluid pressure (Pa) 
fluid velocity (m s - I )  

horizontal Cartesian coordinate (m) 
horizontal Cartesian coordinate (m) 
vertical Cartesian coordinate (m) 
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Greek symbols 

function representing coupling between equations (s- l )  
fluid dynamic viscosity (Pas) 
fluid kinematic viscosity (mz s- I)  

= p / p o - n  (m’s-’) 
fluid density (kgm-3) 
constant fluid density (kgm-,) 
potential representing irrotational flow (m’ s-  l )  

= ( p - po)/po (dimensionless) 
potential representing vorticity (m’ s-  l )  

function of time (s-’) 
gravitationa.1 potential (g =Vn) (m’ s-’) 

Other symbols 

V gradient (m- ’) 
V. divergence (m - ’) 
V x  curl (m-’) 

APPENDIX 

Consider the terms a.Vb and b-Va. In general orthogonal curvilinear co-ordinates these terms are 
given by 

( j  not summed), 

Subtraction of equation (42) from equation (41) yields 

Now choose the unit vector el in the direction of the vector a, i.e. 

a = a l e l .  (44) 

The vector b consists of a component in the direction of el and a component normal to e ,  , i.e. in the 
direction of the unit vector e2:  

b= b l e ,  + b’e,. (45) 

(46 1 
Since u3 = 0, b, = 0 it follows from expression (43) that 

(a * Vb - b - Va), = 0. 

Consequently a-Vb- b-Va is in the plane spanned by the vectors el and e, ,  which also means that 
a.Vb-b.Va is in the plane spanned by the vectors a and b. 
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